Natural selection within the body
Tumours, like populations of rabbits, are prone to rapid and strong evolutionary pressures. Just as the offspring of the fastest-breeding rabbits soon dominate a rabbit warren, so the fastest dividing cells in each tumour come to dominate at the expense of more stable cells. Just as mutant rabbits that burrow underground to escape buzzards soon come to dominate at the expense of rabbits that sit in the open, so mutations in tumour-suppressor genes that enable cells to escape suppression soon come to dominate at the expense of other mutations. The environment of the tumour is literally selecting for mutations in such genes as the external environment selects rabbits.
Link to original
Treatment works by inducing damage that trigger suicide
- prime the body’s self-defense, not acting directly
The suicide of cells in this way is known as apoptosis, from the Greek for the fall of autumn leaves. It is the most important of the body’s weapons against cancer, the last line of defence. Indeed, so important is apoptosis that it is gradually becoming clear that almost all therapeutic cancer treatment works only because it induces apoptosis by alerting p53 and its colleagues. It used to be thought that radiation therapy and chemotherapy worked because they preferentially killed dividing cells by damaging their DNA as it was being copied.
Link to original
These treatments do indeed cause a little DNA damage, he says, but not enough to kill the cells. Instead, the DNA damage is just sufficient to alert p53, which tells the cells to commit suicide. So chemotherapy and radiation therapy are actually, like vaccination, treatments that work by helping the body to help itself.
Link to original - self-defense mutated = incurable
the most intractable tumours—melanoma, lung, colorectal, bladder and prostate—are the ones in which TP53 is usually mutated already. Certain kinds of breast cancer resist treatment: the ones in which TP53 is broken.
Link to original